Today you will use exponential growth and decay models, and logarithmic functions to solve real-life problems.
WARM UP

1. How long would it take for an investment to triple if the interest were compounded continuously at 8.25% ?
(Use $A=P e^{r t}$)

3.5 Growth and Decay Models

EX1

The population y, in millions, of a large city can be modeled by $y=1.8 e^{0.026 x}$, where $x=0$ corresponds to 1990 . In what year is the population of this city expected to reach 2.5 million?

EX2
The radioactive isotope ${ }^{226} \mathrm{Ra}$ has a half-life of 1620 years. If the original amount was 5 grams, how much would remain after 10,000 years? (Use $y=a e^{k t}$ to solve)

Today you will use scatter plots and graphing calculators to find the best-fitting model for a data set, and find exponential and logarithmic models.

3.6 Exponential and Logarithmic Regression Models

EX1

Determine which type of model, logarithmic or exponential, would best model the data.
$(2.5,1.6),(3,1.8),(3.5,1.9),(4,2.1),(4.5,2.3),(5,2.8),(5.5,3.6),(6,4.1),(6.5,4.8),(7,5.5),(7.5,6.5),(8,7.8)$

EX2
Use a graphing calculator to fit a logarithmic model to the following data:

x	2	3	4	5	10	15	20
y	3.16	4.38	5.24	5.91	8.00	9.22	10.09

