1. Model the following situation with a linear equation in slope-intercept form.

The gas tank in a truck holds 15 gallons. The truck uses $\frac{4}{7}$ gallon per mile.
2. Evaluate the function at the specified value(s) of the independent variable and simplify.
$g(x)=\frac{x^{2}-5}{2 x} ; g(n-3)$
3. A publishing company estimates that the average cost (in dollars) for one copy of a new scenic calendar it plans to produce can be approximated by the function
$C(x)=\frac{1.75 x+500}{x}$
where x is the number of calendars printed. Find the average cost per calendar when the company prints 100 calendars.
4. Find the domain of the function.

$$
f(x)=\sqrt{4 x+7}
$$

5. Use a graphing utility to find any relative minimum or maximum values of the function.
$f(x)=x^{3}-12 x+6$
6. Describe the transformation that occurs in the function.
$g(x)=(x-5)^{2}+3$
7. If $f(x)=2-5 x$ and $g(x)=4 x-2$, find (a) $(g \circ f)(x)$ and (b) $(f \circ g)(x)$.
8. Find an equation that represents y as a function of x.
[A] $x=10$
[C] $y=-8 x^{2}$
[B] $x=-7$
$[\mathrm{D}]-8 x^{2}-7 y^{2}=0$
9. Find a set of ordered pairs (x, y) that represents y as a function of x.
[A] $\{(-1,-3),(8,1),(8,-1),(1,8)\}$
$[\mathrm{C}]\{(-1,-3),(-3,8),(-1,1)\}$
$[\mathrm{B}]\{(-1,-3),(-3,-1),(1,1)\}$
[D] $\{-1,-3,8,1\}$
10. Construct a model of the relation $\{(-6,-2),(-3,1),(6,1),(7,6)\}$. Determine whether the relation is a function.
11. Evaluate the function at the specified value(s) of the independent variable and simplify. $f(x)=3 x^{2}-\sqrt{2 x} ; f(9)$
12. Find the domain of the function.
$h(x)=\frac{5 x}{x\left(x^{2}-36\right)}$
13. Find $(f+g)(x)$ and $(f+g)(4)$ for $f(x)=x^{2}-2 x-5$ and $g(x)=-1-4 x+5 x^{2}$.
14. If $f(x)=|2 x|$ and $g(x)=5 x$, find $(f \circ g)(x)$.
15. Find the inverse of the function.

$$
f(x)=\{(-5,-8),(-8,-5),(8,-9)\}
$$

16. The table shows Christine's best javelin throws each year. Use a graphing utility to determine an equation for the line of best fit for the data. Use $x=0$ for 1989.

Year	1989	1990	1991	1992	1993	1994	1995	1996
Distance (m)	36.25	34.75	34.5	36.5	37.75	39	40.25	40.5

17. Find the equation of a quadratic function whose graph opens upward.
[A] $f(x)=8(2 x+11)$
[C] $f(x)=-9(-5 x+9)^{2}$
[B] $f(x)=8 x^{2}+9$
[D] $f(x)=-9 x^{2}+2$
18. Find the graph of the quadratic function.

$$
f(x)=x^{2}-3
$$

[A]

[B]

[C]

[D]

19. Sketch the graph of the quadratic function and list any x-intercepts.
$f(x)=x^{2}+2 x-3$
20. Write the equation of the quadratic function in standard form and find the vertex of the graph. $f(x)=-8 x-7-2 x^{2}$
21. Upco Manufacturing estimates that its profit P in hundreds of dollars is $P=-x^{2}+6 x+1$
where x is the number of units produced in thousands. How many units must be produced to obtain the maximum profit?
22. Find the equation of the function graphed below.

[A] $f(x)=-x^{3}+2 x^{2}$
[C] $f(x)=x^{3}+2 x^{2}$
[B] $f(x)=x^{2}+2 x$
[D] $f(x)=-x^{2}+2 x$
23. Find a polynomial function that has zeros at 1,3 , and -1 and matches the graph below.

[A] $f(x)=x^{3}-3 x^{2}-x+3$
[C] $f(x)=x^{2}+x-3$
[B] $f(x)=-x^{2}-3 x+1$
[D] $f(x)=-x^{3}+3 x^{2}+x+3$
24. Factor $3 x^{3}-8 x^{2}-33 x-10$ given that $x+2$ is one of its factors.
25. Find the standard form of the given complex number.
$-12 i+4 i^{2}$
26. Find all the zeros of the function.
$f(x)=x^{4}+4 x^{3}-4 x^{2}-36 x-45$
27. Determine the domain of the function.
$f(x)=\frac{(x-1)}{(x-8)(x+6)}$
28. Find the horizontal asymptotes, if any, of the graph of $f(x)=\frac{3 x^{2}+4}{4 x^{2}+3 x+9}$.
29. Find the vertical asymptote(s), if any, for $f(x)=\frac{5 x-3}{x^{2}+3 x-4}$.
30. The population of an endangered animal species is given by $f(x)=720(0.83)^{t}$
where 720 is the number of animals currently in the population and t is the time in years. The population is decreasing at an annual rate of 17%. What is the estimated number of animals in this population in 5 years?
31. Sketch the graph of the function.

$$
f(x)=2^{x}+1
$$

32. Sketch the graph of the logarithmic function.

$$
f(x)=\log _{2}(x+6)
$$

33. Use the properties of logarithms to expand the expression. (Assume all variables are positive.)

$$
\log _{8} \frac{x^{6}}{\sqrt[3]{y}}
$$

34. Solve the exponential equation algebraically.

$$
6 e^{0.04 x}+41=71
$$

Find the value of x.
35. $\log _{6}(4 x+3)=4$
36. $\log _{2}(x+3)-\log _{2} x=3$

Find the value of x.
37. $5 \ln (6 x)=11$
38. An automobile manufacturer is introducing a new fuel-efficient model and estimates the demand for the car as

$$
N=57,000 \ln (6 t+7)
$$

where N is the estimated number of cars to be sold and t is the number of years after the car is introduced. When will the demand be 215,000 cars?
39. Find a graph that models an exponential growth function.
[A]

[B]

[C]

[D]

40. Early in the 1900s, an airplane manufacturer was able to increase the time its planes could stay aloft by constantly refining its techniques. Use a graphing utility to find an exponential equation that best models the data. Assume x is the number of years after 1910 and y is the time aloft in hours.

Years after 1910	1	2	3	4	5	6
Time aloft (h)	0.73	1.3	2.5	3.8	4.4	5.8

41. Solve the system by the method of substitution.

$$
\left\{\begin{array}{r}
x+2 y=8 \\
x+y=3
\end{array}\right.
$$

42. Solve the system by elimination.

$$
\left\{\begin{array}{l}
6 x+6 y=42 \\
3 x-6 y=3
\end{array}\right.
$$

43. Use back-substitution to solve the system of linear equations.

$$
\left\{\begin{aligned}
-7 x-7 y-z & =-5 \\
9 y+z & =5 \\
z & =4
\end{aligned}\right.
$$

44. Solve the system of linear equations using Gaussian elimination.

$$
\left\{\begin{aligned}
7 x-3 y-2 z & =6 \\
5 x-5 y-z & =-12 \\
3 x-3 y+2 z & =-2
\end{aligned}\right.
$$

45. Determine the order of the matrix.
$\left[\begin{array}{rr}4 & 12 \\ 6 & -8 \\ -3 & 19 \\ -7 & 1\end{array}\right]$
46. Find a matrix that is equal to the matrix below.
$\left[\begin{array}{rrr}7^{2} & \sqrt{7} & 4 \\ \sqrt{25} & \frac{1}{4} & 2 \\ 0.21 & 25 & \frac{1}{5}\end{array}\right]$
[A] $\left[\begin{array}{rrr}49 & \sqrt{7} & 4 \\ 5 & 0.25 & 2 \\ 0.21 & 25 & 0.2\end{array}\right]$
[C] $\left[\begin{array}{rrr}49 & \sqrt{7} & 4 \\ 625 & 0.1 & 2 \\ 0.21 & 25 & 0.2\end{array}\right]$
[B] $\left[\begin{array}{rrr}14 & 49 & 4 \\ 5 & 0.25 & 2 \\ 0.21 & 25 & 0.2\end{array}\right]$
[D] $\left[\begin{array}{rrr}49 & \sqrt{7} & 4 \\ 5 & 0.25 & 2 \\ 0.21 & \sqrt{5} & 0.02\end{array}\right]$
47. Evaluate the expression.

$$
4 A-7 B
$$

$$
A=\left[\begin{array}{rrr}
1 & 2 & -5 \\
3 & 4 & 0 \\
7 & 10 & -3
\end{array}\right], \quad B=\left[\begin{array}{rrr}
0 & 5 & 7 \\
8 & -6 & -1 \\
-5 & -4 & 6
\end{array}\right]
$$

48. Find the inverse of the matrix (if it exists).

$$
\left[\begin{array}{rrr}
-4 & -5 & 2 \\
0 & 0 & 1 \\
0 & 0 & 3
\end{array}\right]
$$

49. Find the determinant of the matrix.
$\left[\begin{array}{rrr}3 & -4 & -5 \\ -2 & 5 & 4 \\ -1 & 1 & 2\end{array}\right]$
50. Find the product, if possible.
$A B$, if $A=\left[\begin{array}{lll}0 & -4 & 1 \\ 2 & -1 & 0\end{array}\right], \quad B=\left[\begin{array}{rr}1 & -5 \\ 0 & 1 \\ -3 & -1\end{array}\right]$
